MyBooks.club
Все категории

Шон Кэрролл - Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Шон Кэрролл - Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира. Жанр: Прочая научная литература издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
28 январь 2019
Количество просмотров:
188
Читать онлайн
Шон Кэрролл - Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира

Шон Кэрролл - Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира краткое содержание

Шон Кэрролл - Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира - описание и краткое содержание, автор Шон Кэрролл, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Автор книги, известный американский физик-теоретик и блестящий популяризатор науки, рассказывает о физике элементарных частиц, о последних достижениях ученых в этой области, о грандиозных ускорителях и о самой загадочной частице, прозванной частицей Бога, о которой все слышали, но мало кто действительно понимает ее природу Перевернув последнюю страницу, читатель наконец узнает, почему эта частица так важна и почему на ее поиски и изучение свойств ученые не жалеют ни времени, ни сил, ни денег.Лондонское Королевское научное общество назвало книгу лучшей научно-популярной книгой 2013 года.

Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира читать онлайн бесплатно

Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира - читать книгу онлайн бесплатно, автор Шон Кэрролл

Таким образом, вы начинаете с «нулевой гипотезы», которая является своеобразным способом заявить о том, «какого результата вы ожидаете, если ничего экстраординарного не произойдет». Для монеты нулевая гипотеза состоит в том, что при каждом подкидывании вероятность выпадения орла и решки составляет 50 на 50. Для бозона Хиггса нулевая гипотеза состоит в том, что все результаты получены в процессах, где бозона Хиггса вообще нет. Тогда мы спросим, согласуются ли с нулевой гипотезой фактически полученные результаты – а именно, был ли реальный шанс получить такие же результаты при подкидывании «правильной» монетки, или – в ситуации с распадами частиц – если бы бозона Хиггса там не было.

Представьте себе, что мы будем подбрасывать монетку 100 раз. (По-хорошему, мы должны подбросить ее намного больше раз, но нам лень.) Если монетка совершенно нормальная, мы ожидаем получить 50 выпадений орла и 50 – решки или близкое к этому соотношение. Мы не удивились бы, если бы выпал, скажем, 52 раза орел и 48 – решка, но если бы мы получили 93 раза орла и только 7 раз решку, это было бы крайне подозрительно. Хотелось бы эти свои подозрения выразить в количественном виде или, другими словами, узнать, при каких именно отклонениях от предсказанного соотношения исходов 50 на 50 мы должны были бы сделать вывод о том, что у нас была «неправильная» монетка?

Быстрых и четких ответов на этот вопрос нет. Мы могли подбрасывать монетку миллиард раз, и каждый раз выпадал бы орел, и это, в принципе, возможно – просто нам очень, очень везло. Так же работает и наука. Мы не «доказываем» правильность результатов, как это можно сделать в математике или логике, а просто накапливаем все больше и больше свидетельств их правильности, увеличивая их достоверность. Если полученные данные уже существенно отличаются от тех, которые можно было бы ожидать в случае верности нулевой гипотезы, мы отвергаем ее и двигаемся дальше. Поскольку мы рассматриваем процессы, вероятностные по своей сути, и имеем дело только с конечным числом событий, неудивительно, что мы получаем некоторое отклонение от идеального результата. Типичное отклонение обозначается греческой буквой сигма (ст). Это позволит нам выразить в удобном виде, насколько велико отклонение реально наблюдаемых данных от идеального результата, то есть насколько оно больше, чем сигма. Если разница между наблюдаемым результатом измерения и теоретическим прогнозом в два раза больше типичного ожидаемого разброса, мы говорим, что получен результат «две сигмы».


Доверительные интервалы для 100 бросков монеты, когда математическое ожидание равно 50, а среднеквадратичное отклонение в сигмах равно 5. Длина интервала в одну сигму – от 45 до 55, а интервала в пять сигм – от 25 до 75.


Когда мы делаем измерения, разброс вокруг предсказанного исхода часто имеет форму колокола, что и изображено на рисунке вверху. Здесь мы изобразили вероятность получения различных результатов (в данном примере это количество выпадений орла, когда мы бросаем монетку 100 раз). Кривая достигает максимума при наиболее вероятном значении, которое в данном случае равно 50, но есть некоторый естественный разброс вокруг этого значения. Этот разброс – ширина колоколообразной кривой – и есть неопределенность в прогнозе, то есть ст. Для числа подбросов монеты, равного 100, она равна 5, и тогда мы говорим: «Мы ожидаем, что орел выпадет 50 раз плюс-минус 5».

Сигма хороша тем, что она может трансформироваться в вероятность того, какой реальный результат будет получен (даже несмотря на то, что точная формула очень сложна и, как правило, вы просто ищете число в справочнике). Если мы бросаем монетку 100 раз и от 45 до 55 раз выпадает орел, мы говорим, что результат находится «в интервале одной сигмы», что происходит в 68 % испытаний.

Другими словами, результаты, отличающиеся более чем на одну сигму, мы получаем примерно в 32 % испытаний, что немало, так что в результате, отличающемся на одну сигму, нет ничего, что могло бы насторожить. Вы бы не стали подозревать, что монетка «неправильная», только потому, что в 100 подкидываниях 55 раз выпал орел и 45 решка.

Большие сигмы соответствуют все менее вероятным результатам (при условии, что верна нулевая гипотеза). Если у вас из 100 раз орел выпал 60, это отклонение в две ст, и такое происходит только примерно в 5 % испытаний. Этот результат кажется маловероятным, но не совсем неправдоподобным. Его недостаточно, чтобы отвергнуть нулевую гипотезу, но достаточно, чтобы возбудить некоторые подозрения. Выпадению 65 раз орла соответствовало бы отклонению в три ст, что соответствует вероятности 0,3 %. Эти события случаются довольно редко, и теперь у нас появились законные основания думать, что происходит нечто странное. Если бы у нас выпал орел 75 раз из 100, это бы было отклонением в пять ст, а такие события случаются реже чем один раз на миллион. И тогда мы вправе сделать вывод, что сигнал был не просто статистической флуктуацией, и нулевая гипотеза неверна – монетка попалась явно неправильная.

Сигнал и фон

Поскольку физика элементарных частиц управляется квантовой механикой, она очень похожа на подкидывание монетки: самое большее, что мы можем сделать, это предсказывать вероятности. На БАКе мы сталкиваем протоны друг с другом и предсказываем вероятность различных взаимодействий. Для частного случая поиска бозона Хиггса мы рассматриваем различные «каналы», каждый из которых определяется типом частиц, захваченных детекторами. Есть двухфотонный канал, двухлептонный канал, четырехлептонный канал, канал с двумя струями и двумя лептонами, и так далее. В каждом случае мы суммируем энергии вылетающих частиц и с помощью аппарата квантовой теории поля (дополненного реальными измерениями) рассчитываем, сколько событий могли бы ожидать для каждого значения полной энергии. Результаты, как правило, изображаются в виде гладкой кривой.

Наша нулевая гипотеза состоит в том, что бозона Хиггса нет. Если же бозон Хиггса существует, да к тому же обладает какой-то ненулевой массой, основной ожидаемый эффект от него состоит в том, что для соответствующей энергии число событий увеличится. Если масса бозона равна 125 ГэВ, создается некоторое дополнительное количество частиц с суммарной энергией 125 ГэВ, и так далее. Создание бозона Хиггса и его распад обеспечивает механизм (в дополнение ко всем процессам, не связанным с бозоном Хиггса) получения частиц, суммарная энергия которых, как правило, равна массе хиггсовского бозона, что приводит к некоторому количеству дополнительных (по отношению к фону) событий. И мы отправляемся на «сбор шишек» – то есть ищем заметные отклонения от гладкой кривой, которую бы увидели при отсутствии бозона Хиггса.

Мы и не предполагали, что расчет ожидаемого фона будет легкой задачей. Мы, конечно, знаем Стандартную модель, но то, что мы ее знаем, не означает, что рассчитать результат легко. (Стандартной моделью можно описать и атмосферу Земли, но предсказать погоду не так-то просто). С помощью самых совершенных компьютерных алгоритмов ученые моделируют наиболее вероятные исходы протонных столкновений, и эти результаты используются для моделирования работы самих детекторов. И, оценив их усилия, мы охотно признаем, что некоторые вероятности реакций частиц легче измерить, чем просчитать. Чтобы минимизировать влияние человеческого фактора и для лучшего подбора параметров модели часто используется «слепой» анализ, когда каким-то способом скрываются фактические данные в интересующей нас области: либо туда добавляются фиктивные данные, либо просто события в этом «окне» не рассматриваются. Потом добиваются максимально ясного понимания «неинтересных» данных в других областях, и только после того, как это понимание будет достигнуто, открывается «окно», и мы смотрим на экспериментальные данные в той области, где наша частица может скрываться. Подобные манипуляции гарантируют, что мы видим не то, что хотим увидеть, а то, что происходит в действительности.

Так было не всегда. В своей книге «Нобелевские мечты» (Nobel’s Dreams) журналист Гэри Таубес рассказывает об истории исследований Карло Руббиа начала 1980-х годов по обнаружению W– и Z-бозонов, которые принесли ему Нобелевскую премию, а также о его менее успешных попытках получить вторую Нобелевскую премию, за его дерзкие выходы за пределы Стандартной модели. Команда Руббиа использовала при анализе данных по столкновению частиц Megatek – компьютерную систему, которая могла отображать данные на экране компьютера, причем программа позволяла поворачивать изображение вокруг трех координат с помощью джойстика. Заместители Руббиа американец Джеймс Рольф и англичанин Стив Гир стали экспертами в работе на Megatek. Они могли посмотреть на событие, повернуть его немного, отобрать важные треки частиц и уверенно сказать, что они видят – W-, Z-бозон или тау-частицу. «У вас есть эти вычисления, – говорил Руббиа, – но конечная цель всей титанической работы по анализу данных, основная фундаментальная задача должна состоять в том, чтобы дать людям окончательный ответ. И только Джеймс Рольф, глядя на это чертово событие, решит – Z-бозон это или нет». Теперь ситуация изменилась. У нас сейчас гораздо больше данных, но единственный способ понять, что они означают, – пропустить их через компьютер.


Шон Кэрролл читать все книги автора по порядку

Шон Кэрролл - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира отзывы

Отзывы читателей о книге Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира, автор: Шон Кэрролл. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.